[中文] [Eng]

- AP at BUPT
- Ph.D. at THU
- Beijing, China
<aside>
<img src="/icons/mail_gray.svg" alt="/icons/mail_gray.svg" width="40px" /> Email
</aside>
<aside>
<img src="attachment:64d34605-5497-4b94-9c42-20e23376155a:google_scholar图像-removebg-preview.png" alt="attachment:64d34605-5497-4b94-9c42-20e23376155a:google_scholar图像-removebg-preview.png" width="40px" /> Scholar
</aside>
<aside>
<img src="attachment:18d00f86-89f5-45d4-ba61-a9fc74f838bf:github.png" alt="attachment:18d00f86-89f5-45d4-ba61-a9fc74f838bf:github.png" width="40px" /> Github
</aside>
<aside>
<img src="attachment:2ef8c68c-70cb-429c-ab98-daea83e1496f:id.png" alt="attachment:2ef8c68c-70cb-429c-ab98-daea83e1496f:id.png" width="40px" /> OCRID
</aside>
<aside>
<img src="attachment:9dc86646-77be-4718-bbb6-b51664237812:05815E603799A29D53DDB1E0FAF_557A7220_102AD-removebg-preview.png" alt="attachment:9dc86646-77be-4718-bbb6-b51664237812:05815E603799A29D53DDB1E0FAF_557A7220_102AD-removebg-preview.png" width="40px" /> 校网主页
</aside>
<aside>
<img src="attachment:b1096152-2707-43b2-bd5b-f9c8b5ca792d:学院logo.png" alt="attachment:b1096152-2707-43b2-bd5b-f9c8b5ca792d:学院logo.png" width="40px" /> 院网主页
</aside>

个人简介
韩东岐,特聘副研究员,**北京邮电大学-**网络空间学院-智能可信与AI安全实验室(负责人:李小勇院长)。2024年博士毕业于清华大学网络研究院并获优秀毕业生(导师:王之梁副教授)。曾获国家公派留学资格在新加坡南洋理工大学联合培养(导师:刘杨教授)。主要研究方向为可信AI与网络安全,在CCS、NDSS、JSAC、TIFS、TDSC等网络安全领域国际期刊和会议上发表论文20余篇(含CCF-A类论文12篇),申请国家发明专利10余项,相关研究获得IRTF应用网络研究奖、CCS杰出成果奖。主持或参与了国家自然科学基金、重点研发、北京市自然科学基金、国家电网、阿里、奇安信等项目。
<aside>
<img src="/icons/fire_red.svg" alt="/icons/fire_red.svg" width="40px" /> 招生信息
本人所在课题组为网安院李小勇院长团队,经费充足,氛围良好,和国内外多所高校和企业有合作关系,欢迎邮箱([email protected])联系!
- 招收26年硕士研究生(推免)
- 长期招收本科生(网安/计算机/通信专业优先)进行科研实习(发表CCF A/B高水平论文)或指导学科竞赛
</aside>
研究兴趣
- AI赋能的网络安全态势感知:基于数据驱动的人工智能技术(小模型/大模型/Agent)对网络空间中流量、日志、事件等海量多源异构数据进行分析,从中识别与分析特定行为、异常数据和攻击威胁;
- 网络侧安全分析:IM’21, NOMS’24, CN’24;
- 终端侧安全分析:TIFS’22, RAID’24, ISCC’23, TIFS’25a;
- 网络安全垂域智能模型构建:基于可信AI技术提升网络安全应用中智能算法(小模型/大模型/Agent)的可信性和可靠性,解决智能算法在安全实践中的痛点问题,构建内生安全可信的网络安全领域模型;
- 安全模型可解释性:CCS’21, CCS’24;
- 安全模型鲁棒性:JSAC’21, NDSS’23b, TDSC’25;
- 安全模型泛化性:NDSS’23a, TIFS’25b
- 网络安全测量与动态防御:针对网络空间中多种协议、架构和设备进行测量与测绘,深入分析网络空间行为特征和潜在安全风险;基于零信任等技术构建自主智能、动态可信的网络安全防御机制
- 网络安全测量分析:IFIP Networking’23, NDSS’22, 计算机学报’24
- 零信任与可信计算:CCS’25
<aside>
<img src="/icons/info-alternate_lightgray.svg" alt="/icons/info-alternate_lightgray.svg" width="40px" />
corresponding author, * equal contribution,
</aside>
- Keji Miao, Jie Yuan, Xinghai Wei, Xingwu Wang, Dongqi Han#, Haiguang Wang, Runshan Hu, Xiaoyong Li, Zitong Jin, Wenqi Chen. 1BIT: Persistent Path Validation with Customized Noise Signal Characteristics. ACM Conference on Computer and Communications Security (CCS), 2025 (acceptance rate: ??/?? = ??%) [Code][Paper][Slides][Talk]
- Dongqi Han, Zhiliang Wang, Ruitao Feng, Minghui Jin, Wenqi Chen, Kai Wang, Su Wang, Jiahai Yang, Xingang Shi, Xia Yin, Yang Liu. Rules Refine the Riddle: Global Explanation for Deep Learning-Based Anomaly Detection in Security Applications. ACM Conference on Computer and Communications Security (CCS), 2024 (acceptance rate: 331/1964 = 16.9%) [Code][Paper][Slides][Talk], :badge: Artifact (Available+Evaluated-Reusable+Results Reproduced), :award: Distinguished Artifact Awards
- Dongqi Han, Zhiliang Wang, Wenqi Chen, Kai Wang, Rui Yu, Su Wang, Han Zhang, Minghui Jin, Jiahai Yang, Xingang Shi, Xia Yin. Anomaly Detection in the Open World: Normality Shift Detection, Explanation, and Adaptation. Annual Network and Distributed System Security Symposium (NDSS) (acceptance rate: 58/398=14.5%) [Code][Paper][Slides][Talk], :microphone1: IEEE Meeting 119, :award: IRTF Applied Networking Research Prize
- Dongqi Han, Zhiliang Wang, Wenqi Chen, Ying Zhong, Su Wang, Han Zhang, Jiahai Yang, Xingang Shi, Xia Yin. DeepAID: Interpreting and Improving Deep Learning-based Anomaly Detection in Security Applications. ACM Conference on Computer and Communications Security (CCS), 2021 (acceptance rate: 65/315=20.6%) [Code][Paper][Cite]
- Dongqi Han, Zhiliang Wang, Wenqi Chen, Ying Zhong, Su Wang, Han Zhang, Jiahai Yang, Xingang Shi, Xia Yin. Evaluating and Improving Adversarial Robustness of Machine Learning-Based Network Intrusion Detectors. IEEE Journal on Selected Areas in Communications (JSAC), 2021 [Code][Paper][Cite]